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LETTER TO THE EDITOR

Discrete symmetries and spectral statistics

J P Keating and J M Robbins
School of Mathematics, University of Bristol, Bristol BS8 1TW, UK
BRIMS, Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS12 6QZ, UK

Received 21 November 1996

Abstract. We calculate the 2-point spectral statistics associated with a given irreducible
representation (i.e. symmetry class) for time-reversal invariant systems possessing discrete
symmetries using semiclassical periodic orbit theory. When the representation in question is
real or pseudo-real, our results conform to those of the Gaussian orthogonal ensemble (GOE)
of random matrices. When it is complex, we find instead Gaussian unitary ensemble (GUE)
behaviour. This provides a direct semiclassical explanation for the recent observation by Leyvraz
et al (1996) of GUE correlations in the desymmetrized spectra of certain symmetric billiards in
the absence of any time-reversal invariance breaking (e.g. magnetic) fields.

The quantum energy levels of time-reversal invariant systems are expected typically to be
correlated like the eigenvalues of matrices in the Gaussian orthogonal ensemble (GOE) of
random matrix theory (RMT) (Bohigaset al 1984, Berry 1987, Bohigas 1991, Mehta 1991).
To obtain Gaussian unitary ensemble (GUE) statistics, it is usually assumed that one must
break time-reversal invariance; for example, by adding a magnetic field (Berry and Robnik
1986). However, recent numerical computations (Leyvrazet al 1996, hereafter referred to
as LSS), inspired by ideas concerning structural invariance and the unitary representations
of canonical transformations (Leyvraz and Seligman 1992), have shown that it is possible
to find GUE statistics in the spectra associated with particular symmetry classes of certain
symmetric, time-reversal invariant systems.

Our purpose here is to support this conclusion by presenting a general semiclassical
calculation of the 2-point spectral statistics for symmetric systems using the link with
classical periodic orbits provided by the trace formula (Gutzwiller 1971). Specifically,
we shall focus on the dependence of the form factorK(T ) (the Fourier transform of the
2-point autocorrelation function of the density of states) for a given symmetry class on the
properties of the associated irreducible representation of the symmetry group. Our approach
is based directly on the semiclassical theory of spectral rigidity developed by Hannay and
Ozorio de Almeida (1984) and Berry (1985). The result we find is that the levels associated
with real or pseudo-real representations exhibit GOE correlations, whilst those associated
with complex representations are GUE distributed. This agrees with the predictions made
in LSS. To illustrate the general method, the example studied by LSS, namely a billiard
with threefold rotational symmetry, will be treated explicitly.

If a system possesses discrete symmetries then the density of levelsEn, d(E) =∑
n δ(E − En), may be split into a sum over the spectra associated with each of the

symmetry classesα (i.e. the irreducible representations of the associated symmetry group
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G): d(E) = ∑α dα(E). Our aim is to calculate the behaviour of the form factor, defined
for a given such desymmetrized spectrum by

Kα(T ) = 1

nαd̄α

∫ ∞
−∞

exp(ixT /h̄)〈dα(E + x/2)dα(E − x/2)〉E dx − 2πh̄d̄α
nα

δ(T ) (1)

where 〈. . .〉E denotes an energy average,d̄(E) = 〈dα(E)〉E is the corresponding mean
density (Lauritzen and Whelan 1995),nα is the symmetry-related level degeneracy, and the
normalization is chosen so thatKα(T )→ 1 asT →∞. We do this by substituting in the
semiclassical trace formula fordα (Robbins 1989, Lauritzen 1991, Cvitanovic and Eckhardt
1993)

dα(E) ≈ d̄α(E)+ rα

πh̄
Re
∑
j

χα(gj )Aj exp(iSj/h̄). (2)

Here Aj and Sj are the usual (Gutzwiller 1971) amplitude and phase for orbits in the
fundamental domain (Sj is here defined so as to include any Maslov indices),χα is the
character andrα the dimension of the irreducible representation, andgj is the group element
of G that relates initial and final points of the unfolded orbit in the full domain. The result
is that forT > 0

Kα(T ) ≈ 1

T
(α)

H

∑
j

∑
k

〈χα(gj )χ∗α(gk)AjAk exp(i{Sj − Sk}/h̄)δ(T − 1
2(Tj + Tk))〉E (3)

where

T
(α)

H = 2πh̄d̄α

nα
(4)

is the appropriate Heisenberg time (i.e. the time conjugate to the mean level separation
nα/d̄α) and we have used the fact thatnα = rα. The expression (3) is the direct analogue
of the semiclassical formula derived by Berry (1985).

Before proceeding, it may be helpful to focus on the particular example studied in LSS:
a billiard with threefold rotational symmetry but no reflection symmetry (i.e.G = C3).
In this case, the angular momentum modulo 3, which we denote byl, is a good quantum
number and can be used to label the states. The eigenfunctions then transform according to
ψl → exp(2π il/3)ψl under rotation by 120◦. For states withl = 0, one can always find a
basis in which the eigenfunctions are real. Whenl = ±1, however, this is not possible, and
it is for this reason that one might expect GUE spectral statistics. This is not inconsistent
with the fact that the Hamiltonian is time-reversal invariant, because eachl = 1 state has
a time-reversed (i.e. complex conjugated) partner withl = −1 with which it is degenerate;
hence linear combinations can always be constructed that are real.

For such a system the elements of the symmetry group areC3 = {ωj }j=0,1,2, where
ω = exp(2π i/3), the associated characters areχl(ωj ) = ωlj , and nl = 1. The periodic
orbits in the fundamental domain (in this case, the third of the billiard lying between the
raysθ = 0 andθ = 2π/3, with corresponding points on these rays identified) thus appear
in the trace formula (2) with a phase factorχl(gj ) = exp(2π ilwj/3), wherewj is the
winding number of thej th orbit about the origin in the fundamental domain. This makes
the semiclassical origins of the level statistics clear: whenl = 0 the orbit contributions are
time-reversal symmetric and so the statistics are GOE; but whenl 6= 0 these contributions
are the same as if there were an Aharonov–Bohm magnetic flux line of quantum flux strength
φ = 1

3 situated at the origin of the desymmetrized billiard. It is this apparent magnetic flux,
introduced by the desymmetrization into different angular momentum states (irreducible
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representations), that may be viewed as causing the transition to GUE statistics in the same
way as in real Aharonov–Bohm billiards (Berry and Robnik 1986).

We now return to the calculation for the case of a general discrete symmetry to establish
the conditions under which GOE and GUE statistics may be expected to describe the spectral
fluctuations for a given irreducible representation. Our next step is to consider the diagonal
(Sj = Sk) terms in the sum over orbit pairs in (3). There are two main reasons for doing
this. First, these terms are known to dominate the off-diagonal contributions forT � T

(α)
H

(Berry 1985), and so to determine the spectral correlations over ranges much larger than the
mean level separationnα/d̄α (in which range the unresummed semiclassical approximation
(3) is expected to be valid (Keating 1994)). Second, the bootstrapping method (Bogomolny
and Keating 1996) to extend the periodic orbit calculation ofK(T ) to all values ofT is
based on a leading-order evaluation of the off-diagonal contributions directly in terms of
the diagonal ones. The diagonal terms thus contain, to a first approximation, all long-range
2-point statistical information about the spectral correlations.

The diagonal pairs generically fall into two categories. In the first, the labelsj andk
refer to the same orbit, and soAj = Ak, Sj = Sk, Tj = Tk andχα(gj ) = χα(gk). In the
second, the orbit labelledk is the time-reverse of the orbit labelledj . We represent this
by writing k = j ∗. Again, Aj = Aj∗ , Sj = Sj∗ and Tj = Tj∗ , but for point symmetries
χ∗α(gj∗) = χ∗α(g−1

j ) = χα(gj ), where the first equality holds because in configuration space
the time-reversed orbit is just the original one oppositely traversed. The diagonal terms may
thus be written

K(diag)
α (T ) = 1

T
(α)

H

∑
j

〈A2
j {|χα(gj )|2+ (χα(gj ))2}δ(T − Tj )〉E. (5)

The amplitudesA2
j vary much more slowly than the charactersχα(gj ) with changes

in the periodsTj . Indeed to a first approximation the group elementsgj , and hence the
character values, are not correlated with the periods, because unfolded orbits with almost
identical periods can have their initial and final points related in completely different ways.
Thus in evaluating the orbit sum it is legitimate to first average over the character values.
We do this by replacing|χα(gj )|2 and(χα(gj ))2 by their group averages, defined by

〈f (g)〉G = 1

|G|
∑
g∈G

f (g). (6)

This assumes that the group elementsgj for orbits with Tj ≈ T are uniformly distributed
in G. For chaotic systems this is a natural approximation that is expected to hold in the
limit as T → ∞; that is, if T is measured in units of the Heisenberg time, it is valid in
the semiclassical limit for any fixed dimensionless time. The analogue for Aharonov–Bohm
billiards with a rational fluxφ = n/m is that the winding numbers of orbits around the flux
line may be taken to be uniformly distributed modulom. In fact, these winding numbers
are usually assumed to be Gaussian distributed with a variance proportional to

√
T (Berry

and Robnik 1986), and so when
√
T � m the distribution is indeed approximately uniform,

this approximation clearly improving asT → ∞. Also, as has already been noted, for
threefold rotationally symmetric billiards the characters appearing in the form factor may
be interpreted as being determined by the winding numbers around an apparent flux line
with φ = 1

3 at the origin of the fundamental domain.
To calculate the group averages we first use the well known orthonormality of the

characters, which implies that

〈|χα(g)|2〉G = 1. (7)
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Second, we have that ifχα(g) is a character of an irreducible representation ofG then its
complex conjugate is as well, there being two possibilities: eitherχ∗α(g) = χα(g), in which
case the representation is said to be real or pseudo-real†; or χ∗α(g) = χβ(g) 6= χα(g), in
which case it is said to be complex. We may then use the general formula (see, for example,
Hamermesh 1962)

〈(χα(g))2〉 ≡ β − 1=
{

1 if α is real or pseudo-real

0 if α is complex.
(8)

Substituting (7) and (8) into (5) thus gives

K(diag)
α (T ) = β

T
(α)

H

∑
j

〈A2
j δ(T − Tj )〉E. (9)

Finally, using the sum rule of Hannay and Ozorio de Almeida (1984) to evaluate the sum
over periodic orbits, we find that

K(diag)
α (T ) = β T

T
(α)

H

. (10)

When β = 1 this result coincides with the diagonal contribution toK(T ) for GUE-
correlated spectra, as calculated by Berry (1985) for non-time-reversal-invariant systems:
when β = 2 it coincides with the corresponding GOE expression. The implication of
the above semiclassical calculation is therefore that spectra associated with real or pseudo-
real irreducible representations should be GOE correlated, whilst those associated with
complex representations should exhibit GUE statistics. This agrees precisely with the
behaviour conjectured in LSS on the basis of previous studies of the unitary representations
of canonical transformations (Leyvraz and Seligman 1992). In particular, for the case of
threefold rotationally symmetric systems, the irreducible representation corresponding to
α = 0 is real, but the other two representations are complex. Our results thus provide a
direct semiclassical periodic orbit theory for the numerical computations discussed in LSS.

We are grateful to Professors Leyvraz, Schmit and Seligman for making their results
available to us prior to publication.
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